Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium.

Identifieur interne : 000644 ( Main/Exploration ); précédent : 000643; suivant : 000645

Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium.

Auteurs : Takuya Ishida [Japon] ; Shinya Fushinobu ; Rie Kawai ; Motomitsu Kitaoka ; Kiyohiko Igarashi ; Masahiro Samejima

Source :

RBID : pubmed:19193645

Descripteurs français

English descriptors

Abstract

Glycoside hydrolase family 55 consists of beta-1,3-glucanases mainly from filamentous fungi. A beta-1,3-glucanase (Lam55A) from the Basidiomycete Phanerochaete chrysosporium hydrolyzes beta-1,3-glucans in the exo-mode with inversion of anomeric configuration and produces gentiobiose in addition to glucose from beta-1,3/1,6-glucans. Here we report the crystal structure of Lam55A, establishing the three-dimensional structure of a member of glycoside hydrolase 55 for the first time. Lam55A has two beta-helical domains in a single polypeptide chain. These two domains are separated by a long linker region but are positioned side by side, and the overall structure resembles a rib cage. In the complex, a gluconolactone molecule is bound at the bottom of a pocket between the two beta-helical domains. Based on the position of the gluconolactone molecule, Glu-633 appears to be the catalytic acid, whereas the catalytic base residue could not be identified. The substrate binding pocket appears to be able to accept a gentiobiose unit near the cleavage site, and a long cleft runs from the pocket, in accordance with the activity of this enzyme toward various beta-1,3-glucan oligosaccharides. In conclusion, we provide important features of the substrate-binding site at the interface of the two beta-helical domains, demonstrating an unexpected variety of carbohydrate binding modes.

DOI: 10.1074/jbc.M808122200
PubMed: 19193645
PubMed Central: PMC2665064


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Ishida, Takuya" sort="Ishida, Takuya" uniqKey="Ishida T" first="Takuya" last="Ishida">Takuya Ishida</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Biomaterials Sciences and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Departments of Biomaterials Sciences and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fushinobu, Shinya" sort="Fushinobu, Shinya" uniqKey="Fushinobu S" first="Shinya" last="Fushinobu">Shinya Fushinobu</name>
</author>
<author>
<name sortKey="Kawai, Rie" sort="Kawai, Rie" uniqKey="Kawai R" first="Rie" last="Kawai">Rie Kawai</name>
</author>
<author>
<name sortKey="Kitaoka, Motomitsu" sort="Kitaoka, Motomitsu" uniqKey="Kitaoka M" first="Motomitsu" last="Kitaoka">Motomitsu Kitaoka</name>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19193645</idno>
<idno type="pmid">19193645</idno>
<idno type="doi">10.1074/jbc.M808122200</idno>
<idno type="pmc">PMC2665064</idno>
<idno type="wicri:Area/Main/Corpus">000646</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000646</idno>
<idno type="wicri:Area/Main/Curation">000646</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000646</idno>
<idno type="wicri:Area/Main/Exploration">000646</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Ishida, Takuya" sort="Ishida, Takuya" uniqKey="Ishida T" first="Takuya" last="Ishida">Takuya Ishida</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departments of Biomaterials Sciences and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Departments of Biomaterials Sciences and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657</wicri:regionArea>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="région">Région de Kantō</region>
</placeName>
<orgName type="university">Université de Tokyo</orgName>
<placeName>
<settlement type="city">Tokyo</settlement>
<region type="province">Région de Kantō</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fushinobu, Shinya" sort="Fushinobu, Shinya" uniqKey="Fushinobu S" first="Shinya" last="Fushinobu">Shinya Fushinobu</name>
</author>
<author>
<name sortKey="Kawai, Rie" sort="Kawai, Rie" uniqKey="Kawai R" first="Rie" last="Kawai">Rie Kawai</name>
</author>
<author>
<name sortKey="Kitaoka, Motomitsu" sort="Kitaoka, Motomitsu" uniqKey="Kitaoka M" first="Motomitsu" last="Kitaoka">Motomitsu Kitaoka</name>
</author>
<author>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
</author>
<author>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Glucan 1,3-beta-Glucosidase (chemistry)</term>
<term>Hydrolysis (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Conformation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Peptides (chemistry)</term>
<term>Phanerochaete (enzymology)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
<term>beta-Glucans (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Conformation moléculaire (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glucan 1,3-beta-glucosidase (composition chimique)</term>
<term>Hydrolyse (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Peptides (composition chimique)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>bêta-Glucanes (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glucan 1,3-beta-Glucosidase</term>
<term>Peptides</term>
<term>beta-Glucans</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glucan 1,3-beta-glucosidase</term>
<term>Peptides</term>
<term>bêta-Glucanes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Crystallography, X-Ray</term>
<term>Hydrolysis</term>
<term>Kinetics</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Amino Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Catalyse</term>
<term>Cinétique</term>
<term>Conformation moléculaire</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Hydrolyse</term>
<term>Modèles moléculaires</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sites de fixation</term>
<term>Spécificité du substrat</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glycoside hydrolase family 55 consists of beta-1,3-glucanases mainly from filamentous fungi. A beta-1,3-glucanase (Lam55A) from the Basidiomycete Phanerochaete chrysosporium hydrolyzes beta-1,3-glucans in the exo-mode with inversion of anomeric configuration and produces gentiobiose in addition to glucose from beta-1,3/1,6-glucans. Here we report the crystal structure of Lam55A, establishing the three-dimensional structure of a member of glycoside hydrolase 55 for the first time. Lam55A has two beta-helical domains in a single polypeptide chain. These two domains are separated by a long linker region but are positioned side by side, and the overall structure resembles a rib cage. In the complex, a gluconolactone molecule is bound at the bottom of a pocket between the two beta-helical domains. Based on the position of the gluconolactone molecule, Glu-633 appears to be the catalytic acid, whereas the catalytic base residue could not be identified. The substrate binding pocket appears to be able to accept a gentiobiose unit near the cleavage site, and a long cleft runs from the pocket, in accordance with the activity of this enzyme toward various beta-1,3-glucan oligosaccharides. In conclusion, we provide important features of the substrate-binding site at the interface of the two beta-helical domains, demonstrating an unexpected variety of carbohydrate binding modes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19193645</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>05</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>284</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2009</Year>
<Month>Apr</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>10100-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M808122200</ELocationID>
<Abstract>
<AbstractText>Glycoside hydrolase family 55 consists of beta-1,3-glucanases mainly from filamentous fungi. A beta-1,3-glucanase (Lam55A) from the Basidiomycete Phanerochaete chrysosporium hydrolyzes beta-1,3-glucans in the exo-mode with inversion of anomeric configuration and produces gentiobiose in addition to glucose from beta-1,3/1,6-glucans. Here we report the crystal structure of Lam55A, establishing the three-dimensional structure of a member of glycoside hydrolase 55 for the first time. Lam55A has two beta-helical domains in a single polypeptide chain. These two domains are separated by a long linker region but are positioned side by side, and the overall structure resembles a rib cage. In the complex, a gluconolactone molecule is bound at the bottom of a pocket between the two beta-helical domains. Based on the position of the gluconolactone molecule, Glu-633 appears to be the catalytic acid, whereas the catalytic base residue could not be identified. The substrate binding pocket appears to be able to accept a gentiobiose unit near the cleavage site, and a long cleft runs from the pocket, in accordance with the activity of this enzyme toward various beta-1,3-glucan oligosaccharides. In conclusion, we provide important features of the substrate-binding site at the interface of the two beta-helical domains, demonstrating an unexpected variety of carbohydrate binding modes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ishida</LastName>
<ForeName>Takuya</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Departments of Biomaterials Sciences and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fushinobu</LastName>
<ForeName>Shinya</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kawai</LastName>
<ForeName>Rie</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kitaoka</LastName>
<ForeName>Motomitsu</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Igarashi</LastName>
<ForeName>Kiyohiko</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Samejima</LastName>
<ForeName>Masahiro</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>02</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047071">beta-Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9051-97-2</RegistryNumber>
<NameOfSubstance UI="C033363">beta-1,3-glucan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.58</RegistryNumber>
<NameOfSubstance UI="D043326">Glucan 1,3-beta-Glucosidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D043326" MajorTopicYN="N">Glucan 1,3-beta-Glucosidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047071" MajorTopicYN="N">beta-Glucans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19193645</ArticleId>
<ArticleId IdType="pii">M808122200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M808122200</ArticleId>
<ArticleId IdType="pmc">PMC2665064</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):305-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1999 May;6(5):458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10331874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Aug;56(Pt 8):965-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10944333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Sep 19;39(37):11238-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10985769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 Feb;67(2):865-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11157256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Oct 17;277(1-2):199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11602357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2001 Sep;65(9):2050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11676020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 2001 Oct;77(2):111-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11747907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Oct;11(5):593-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11785761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2002 Feb;12(1):14-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Feb;27(2):59-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11852237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jul 12;320(3):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Aug 28;124(34):10015-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12188666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Oct 23;530(1-3):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12387897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2003 Apr 21;(8):946-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12744312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2003 Jun;67(6):1349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12843664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Sep;11(9):1111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12962629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Jul;150(Pt 7):2029-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 31;279(53):55097-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2004 Oct;68(10):2111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15502357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2004 Dec 27;339(18):2851-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15582611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1991 Feb;57(2):374-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2006 Aug;71(6):898-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16374635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2006 Mar;28(6):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16614901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;364:215-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 16;282(11):8414-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17192265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2007 Mar;31(2):168-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17313520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17459873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Dec 1;280 ( Pt 2):309-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1747104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Jan 11;375(2):499-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18035374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2007 Jan;17(1):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18051351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2008 May;16(5):766-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18462681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 29;283(35):23819-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18574239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 1991;10(4):275-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1906376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 1998;62(8):1643-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27388851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1970 May;61(2):183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5476890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Dec;177(23):6937-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1994 Dec;4(6):885-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7712292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Enzyme Microb Technol. 1993 Mar;15(3):178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7763458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1993 Dec 15;1(4):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8081738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Feb;60(2):594-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8135518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Aug 1;293 ( Pt 3):781-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8352747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Sep 15;3(9):853-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8535779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1995 Nov;20(11):478-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8578593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Jun 1;316 ( Pt 2):695-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8687420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Jun 15;308 ( Pt 3):733-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8948426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Oct 1;17(19):5551-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9755156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Jan 21;226(2):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9931476</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région de Kantō</li>
</region>
<settlement>
<li>Tokyo</li>
</settlement>
<orgName>
<li>Université de Tokyo</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Fushinobu, Shinya" sort="Fushinobu, Shinya" uniqKey="Fushinobu S" first="Shinya" last="Fushinobu">Shinya Fushinobu</name>
<name sortKey="Igarashi, Kiyohiko" sort="Igarashi, Kiyohiko" uniqKey="Igarashi K" first="Kiyohiko" last="Igarashi">Kiyohiko Igarashi</name>
<name sortKey="Kawai, Rie" sort="Kawai, Rie" uniqKey="Kawai R" first="Rie" last="Kawai">Rie Kawai</name>
<name sortKey="Kitaoka, Motomitsu" sort="Kitaoka, Motomitsu" uniqKey="Kitaoka M" first="Motomitsu" last="Kitaoka">Motomitsu Kitaoka</name>
<name sortKey="Samejima, Masahiro" sort="Samejima, Masahiro" uniqKey="Samejima M" first="Masahiro" last="Samejima">Masahiro Samejima</name>
</noCountry>
<country name="Japon">
<region name="Région de Kantō">
<name sortKey="Ishida, Takuya" sort="Ishida, Takuya" uniqKey="Ishida T" first="Takuya" last="Ishida">Takuya Ishida</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000644 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000644 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19193645
   |texte=   Crystal structure of glycoside hydrolase family 55 {beta}-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19193645" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020